Timetable

Regulation application subjects and requirements

New control items in effluent criteria for business categories in the Water Pollution Control Act and new business subcategories for animal excrement or bioenergy resource processing centers (or biogas reuse centers), seawater desalination plants and steam supply business

		steam supply business				
	From Apr 29	Desalination		plant:		
	2019 on			Item	Existing	Remark
	2017 01			Discharge to surface water	< 38 °C	Applicable through May to September
19			ure	bodies other than ocean	< 35 °C	Applicable through October to next April
			Lap NA Lap	discharge to	Water temperature at discharge point shall not exceed 42 °C, and the surface water temperature difference shall not exceed 4 °C 500 m from the discharge point.	
			H ⁺ ion	concentration index	6.0 - 9.0	
) II (nical oxygen demand	100	
5			Susp	ended solids	50	
		New controls	(or chl	esidual chlorine lorine-forming oxides)	0.5	 The total residual chlorine is applicable to discharged water with salinity < 10 psu (practical salinity unit); The chlorine-forming oxides are applicable to discharged water with salinity equal to or greater than 10 psu (practical salinity unit), which shall be determined using the method for chlorine-forming oxide test However, the test may be performed using the method for total residual chlorine test before the method for chlorine-forming oxide test is promulgated.
			A	Ammonia	20	
				nic surfactant	10	
				se (n-hexane extract)	10	
				oluble iron	10	
			Solub	le manganese Cd	10 0.03	
			<u> </u>	Pb	1.0	
			<u> </u>	Total Cr	2.0	
				kavalent Cr	0.5	
				al mercury	0.005	
				Cu	3.0	
				Zn	5.0	
				Ag	0.5	
				Ni	1.0	
				Se	0.5	
				As	0.5	

From July 1 2019 on

Business subcategories for animal excrement or bioenergy resource processing centers (or biogas reuse centers) –

Businesses involving in collecting animal excrements or liquid and solid digestates after anaerobic fermentation for growing aquaculture feeds, such as algae, rotifers and water fleas, and the farming of other aquatic animals:

ls	Item	Existing	Remark
controls	Biochemical oxygen demand	80	
New co	Chemical oxygen demand	600	
Z	Suspended solids	150	

Note: all values in mg/L

The control values for 43 commonly applicable items, including water temperature and H+ ion index, shall be met for business subcategories for animal excrement or bioenergy resource processing centers (or biogas reuse centers) – businesses involving in collecting animal excrements or liquid and solid digestates after anaerobic fermentation for growing aquaculture feeds, such as algae, rotifers and water fleas, and the farming of other aquatic animals.

From July 1 2020 on

Existing: those that were built, being built or whose project tendering has completed by April 29 2019.

New: those whose project tendering has not completed by April 29 2019.

Steam supply business:

	Item	Existing	Remark
New controls	Chemical oxygen demand	100	
	Suspended solids	30	
	Item	Existing/new	Remark
	Dioxin	10/5	

Note: dioxin is in pg-I-TEQ/L and the other values are in mg/L.

The control values for 43 commonly applicable items, including water temperature and H+ ion index, shall be met for the steam supply business.

New or stricter controls, including true colorimetry, heavy metals, ammonia and harmful substances, in 2017 water discharge criteria

From Jan 1 2021 on

Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

Wafer foundry and semiconductor manufacturing:					
	Item	Existing	Remark		
	Cd	0.02			
	Pb	0.5			
olds	Total Cr	1.5			
Stricter thresholds	Hexavalent Cr	0.35			
cter th	Cu	1.5	> 500CMD		
Stric	Zn	3.5			
	Ni	0.7			
	Se	0.35			
	As	0.35			

Note: all values in mg/L

	Item	Existing	Remark
	Sn	2.0	> 500CMD
	Мо	0.6	
	Item	Existing/new	Remark
New controls	N-Methylpyrrolidone	1.0	Those approved for
	2-Methoxy-1-Propanol	0.1	discharge $10,000$ m ³ /day or more; however, this does not apply to those
	Dimethylacetamide	0.1	
	Со	1.0	engaging in milling, cutting, testing or
	Sb	1.0	packaging.

Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

Photoelectronic material and component manufacturing:					
	Item	Existing	Remark		
	Cd	0.02			
	Pb	0.5			
s	Total Cr	1.5			
shold	Hexavalent Cr	0.35			
r thre	Cu	1.5	> 500CMD		
Stricter thresholds	Zn	3.5			
Ś	Ni	0.7			
	Se	0.35			
	As	0.35			
	True colorimetry	400			

Note: the true colorimetry is unitless and other values are in mg/L.

	Item	Existing	Remark
	Sn	2.0	> 500CMD
	Free available residual chlorine	2.0	
	Item	Existing/new	Remark
New controls	N-Methylpyrrolidone	1.0	Those approved for
	2-Methoxy-1-Propanol	0.1	discharge 10,000 m ³ /day or more; however, this does not apply to those
	Dimethylacetamide	0.1	
	N-methylformamide	1.0	engaging in milling, cutting, testing or
	Diethylene glycol dimethyl ether	1.0	packaging.

From Jan 1

Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

Petrochemical industry:

1 0010	i en en en muustry e					
S	Item	Existing				
Stricter thresholds	True colorimetry	400				

Note: true colorimetry is unitless.

New controls	Item	Existing		
	Free available residual chlorine	2.0		
	Item	Existing/new	Remark	
	acrylonitrile	0.2	Those approved for discharge $10,000 \text{ m}^3/\text{day}$ or more;	
	1,3-butadiene	0.1	however, this does not apply to those that only produce natural gas.	

Note: all values in mg/L

Chemical industry:				
	Item	Existing	Remark	
	Cd	0.02		
	Pb	0.5		
S	Total Cr	1.5		
Stricter thresholds	Hexavalent Cr	0.35		
r thre	Cu	1.5	> 500CMD	
tricte	Zn	3.5		
S	Ni	0.7		
	Se	0.35		
	As	0.35		
	True colorimetry	400		

Note: true colorimetry is unitless and the other values are in mg/L.

From Jan 1

Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

Chemical industry:					
	Item	Existing	Remark		
	Sn	2.0	> 500CMD		
	Мо	0.6			
trols	Free available residual chlorine	2.0			
New controls	Item	Existing/new	Remark		
New	acrylonitrile	0.2	Those approved for discharge 10,000 m3/day or more; however, this		
	1,3-butadiene	0.1	does not apply to those that only produce fertilizers or manufacture lime or coal products.		
Note:	all values in mg/L		-		

Basic metal works, metal surface treatment, electroplating and PCB

manufacturing:

	Item	Existing	Remark
	Cd	0.02	
	Pb	0.5	
splot	Total Cr	1.5	Electroplating, metal
Stricter thresholds	Hexavalent Cr	0.35	surface treatment and
	Cu	1.5	basic metal works > 150CMD or PCB manufacturing >
	Zn	3.5	
	Ni	0.7	500CMD
	Se	0.35	
	As	0.35	

Note: all values in mg/L

	Item	Existing	Remark
New controls	Sn	2.0	Electroplating, metal surface treatment and basic metal works > 150CMD or PCB manufacturing > 500CMD
	Мо	0.6	

Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

ł	Basic metal works, metal surface treatment, electroplating and PCB
	manufacturing:

ls		Item		Existing
New controls	Ammonia	metal surface treatment, electroplating	Discharging outside of utility water quality and quantity protection zones	150

Note: all values in mg/L

Power plants:

rower punts.				
S	Item	Existing (coal-fueled)	Remark	
thresholds	Total mercury	0.002	Existing power plants that operate coal-fueled power	
er thre	Se	0.3	generators and produce	
Stricter	As	0.1	desulfurization wastewater treated at a wastewater treatment facility	

Note: all values in mg/L

ls		Item	Existing
New controls	Ammonia	Discharging outside of utility water quality and quantity protection zones	150

Note: all values in mg/L

Businesses other than the six mentioned above (pharmaceutical, agriculture and 15 others):

esholds	Item	Existing
Stricter thresh	True colorimetry	400

Note: true colorimetry is unitless.

	cols	Item	Existing
Free available residual chlorine 2.0		Free available residual chlorine	2.0

Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed

Tanneries (making leather from raw hides) and landfills:

		Item	Existing
New controls	Ammonia	Discharging outside of utility water quality and quantity protection zones	150

Note: all values in mg/L

Manufacturing of pesticides and environmental sanitation agents, and others:

ls	Item	Existing
New controls	Мо	0.6
Note: all values in mg/L		

Hotels:

	Item	Existing
Stricter thresholds	BOD	30
	COD	100
tricte	SS	30
S	E. coli colonies	200,000

Note: E. coli colonies are in CFU/100 mL and the other values are in mg/L.

ls		Item	Existing
/ controls	Total nitrogen	Discharging outside of utility water quality and	15
New	Total phosphorus	quantity protection zones	2.0

Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

Science parks:		
	Item	Existing
	Cd	0.02
	Pb	0.5
ls	Total Cr	1.5
shold	Hexavalent Cr	0.35
Stricter thresholds	Cu	1.5
	Zn	3.5
S	Ni	0.7
	Se	0.35
	As	0.35
	True colorimetry	400

Note: the true colorimetry is unitless and the other values are in mg/L.

	Item	Existing
	Sn	2.0
	Free available residual chlorine	2.0
	Item	Existing/new
trols	N-Methylpyrrolidone	1.0
New controls	2-Methoxy-1-Propanol	0.1
Nev	Dimethylacetamide	0.1
	Со	1.0
	Sb	1.0
	N-methylformamide	1.0
	Diethylene glycol dimethyl ether	1.0

Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

Petro	chemical industrial parks:	
	Item	Existing*
	Cd	0.02
	Pb	0.5
spl	Total Cr	1.5
Stricter thresholds	Hexavalent Cr	0.35
r thre	Cu	1.5
ricter	Zn	3.5
Stı	Ni	0.7
	Se	0.35
	As	0.35
	True colorimetry	400

Note: the true colorimetry is unitless and the other values are in mg/L.

	Item	Existing
	Sn	2.0
	Мо	0.6
New controls	Free available residual chlorine	2.0
	Item	Existing/new
	Nitrobenzene	0.4
	Trichloroethylene	0.3
	acrylonitrile	0.2
	1,3-butadiene	0.1
Note:	all values in mg/L	

Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

Other industrial parks:	Other	industrial	parks:
-------------------------	-------	------------	--------

	findestrief period	
	Item	Existing
	Cd	0.02
	Pb	0.5
spl	Total Cr	1.5
Stricter thresholds	Hexavalent Cr	0.35
r thr	Cu	1.5
ricte	Zn	3.5
St	Ni	0.7
	Se	0.35
	As	0.35
	True colorimetry	400

Note: the true colorimetry is unitless and the other values are in mg/L.

		Item	Existing
s		Sn	2.0
ontrol	Free availal	ble residual chlorine	2.0
New controls	Ammonia	Discharging outside of utility water quality and quantity protection zones	100

Note: all values in mg/L

Public sewage systems	(applicable for flow	rate > 250CMD):
	(approacte for non	1000 - 2000112)

			Item	Existing
		Dischargi ng outside of utility	Those approved to receive and treat industrial wastewater, intercepted water or liquid manure up to 20% of the maximum design total wastewater (sewage).	75
Stricter controls	Ammon ia	water quality and quantity protection zones	Those approved to receive and treat industrial wastewater, intercepted water or liquid manure up to 20% of the maximum design total wastewater (sewage); or those that do not receive and treat industrial wastewater, intercepted water or liquid manure.	10
	Total nitrogen	Dischargi ng outside of utility water quality and quantity protection zones	Those approved to receive and treat industrial wastewater, intercepted water or liquid manure up to 20% of the maximum design total wastewater (sewage); or those that do not receive and treat industrial wastewater, intercepted water or liquid manure.	50

Metal surface treatment and electroplating:

		1 8	
ols		Item	Existing
New contro	Ammonia	Discharging outside of utility water quality and quantity protection zones	120

Note: all values in mg/L

Existing: those
that were built,
being built or
whose project
tendering has
completed by
Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

		Item	Existing
Regional thresholds	Boron	Discharging outside of utility water quality and quantity protection zones	10

Note: all values in mg/L

Power plants:

IO			
New controls	Ammonia	Discharging outside of utility water quality and quantity protection zones	100

Tanneries (making leather from raw hides) and landfills:

sl		Existing	
New controls	Ammonia	Discharging outside of utility water quality and quantity protection zones	60

Note: all values in mg/L

Other industrial parks:

ls		Existing	
New controls	Ammonia	Discharging outside of utility water quality and quantity protection zones	75
N-4-	all values in ma/I		

From Jan 1	_	Publi	ic sewa	age systems (applicable for flow rate > 250CMD):
2024 on				Item		Existing/new
Existing: those				Dischargi	ng outside of utility water quality and quantity protection zones	6/6
that were built, being built or whose project			а	Discharging	Those approved to receive and treat industrial wastewater, intercepted water or liquid manure up to 20% of the maximum design total wastewater	30/20
tendering has completed by Dec 25 2017. New: those		New controls	Ammonia	outside of utility water quality and quantity protection zones	(sewage). Those approved to receive and treat industrial wastewater, intercepted water or liquid manure up to 20% of the maximum design total wastewater (sewage); or those that do not receive and treat industrial wastewater,	10/6
whose project tendering has			u	Discharging outside of	intercepted water or liquid manure. Those approved to receive and treat industrial wastewater, intercepted water	
not completed by Dec 25 2017.			Total nitrogen	utility water quality and quantity protection	or liquid manure up to 20% of the maximum design total wastewater (sewage); or those that do not receive and treat industrial wastewater,	35/20
		Net	-11 1	zones	intercepted water or liquid manure.	

Note: all values in mg/L

From Jan 1 2027 on

1	Metal surface treatment and electroplating:				
	S	It	em	Existing	
	New controls	Ammonia	Discharging outside of utility water quality and quantity protection zones	60	

Note: all values in mg/L

	Item	L	Existing
Regional thresholds	Boron	Discharging outside of utility water quality and quantity protection zones	5.0

From Jan 1 2027 on Existing: those that were built, being built or whose project tendering has completed by Dec 25 2017.

New: those whose project tendering has not completed by Dec 25 2017.

	-		
s		Item	Existing
New controls	Ammonia	Discharging outside of utility water quality and quantity protection zones	60

Other industrial parks:

ls	Item		Existing
New controls	Ammonia	Discharging outside of utility water quality and quantity protection zones	30
Note: a	all values in mg/L	Lones	